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the same Debye-Waller parameter was found and the 
population parameter was 2-01 ___0"03. Evidently the 
cusp-constrained density function (4) does not have 
quite enough charge in the neighborhood of the 
nucleus. 

As pointed out above, the construction of(4) is along 
tenuous lines, but at least serves to illustrate the im- 
portance of electronic details in a calculated atomic 
scattering factor. A difficult, but accurate, quantum- 
chemical calculation of the electronic wavefunction 
for diamond is probably needed to correctly describe 
the X-ray scattering at the large values of sin 0/2 
(>0 .7 /~ - ' ) .  A Hartree-Fock core scattering factor 
appears to be insufficient for the case studied here. It 
should also be noted that a detailed charge-density 
analysis of the valence structure of diamond (Stewart, 
1973) does not significantly alter the results in Table 1. 
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In previous treatments of diffraction by random-layer lattices the effect of strain has been neglected. 
In this study the applicability of Cauchy's, Gauss's and taplace's distributions to strain in layered 
lattices is examined and equations for the intensity profiles have been developed which take the strain 
effect into account. An analysis of the scattering intensities of glassy carbon revealed that the strain 
distribution has a Cauchy form and the contribution of strain to the widths of the observed intensity 
profiles ranges from 43 to 85 %. 

Introduction 

The peculiar shape of the two-dimensional reflections 
produced by random-layer lattices was explained 
quantitatively by Warren (1941). Later work mainly 
concerned some of the simplifications made in the 
derivation of the Warren equation and alternative 
approaches in deriving similar equations (Wilson, 1949; 
Brindley & Meting, 1951 ; Warren & Bodenstein, 1966; 
Ruland, 1967). The above treatments involved the con- 
cept of small layers. Ergun (1970) noted that in carbons 
the existence of small layers having sizes indicated by 
the line widths of their diffraction profiles is not 
substantiated by electron-microscope observations or 
small-angle scattering and proposed a defective lattice 
theory. A recent study of the Fourier transforms of the 

intensities of a glassy carbon (Ergun & Schehl, 1973) 
revealed that the observed widths of the peaks are 
largely produced by strain. For example, strain ac- 
counts for 57 and 78 % of the observed widths of the 
11 and 41 reflections, respectively, of the glassy carbon 
studied. For an authentic interpretation of the ob- 
served profiles it appears that it is necessary to develop 
equations that take the strain into account. 

Theory 

For an isotropic sample the contribution to the inter- 
ference function of an interatomic distance l is given 
by sin (hl)/hl, with h=4~z sin 0/2, 0 being the Bragg 
able and 2, the wavelength. If, owing to strain, an inter- 
atomic distance l is altered by 6, we need to evaluate. 
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p(h,l, fi)=(,sin ( l+f)h / ( l+g)h)  

= f ~ [sin (l+6)h/(l+f)h]~o'(f)d6 ( l )  
d - -  oo 

in which 09' is the frequency function. 
Particularly attractive for evaluating p is the Cauchy 

distribution, the frequency function of which is given by 

(o'(6) = o./(o, z + 62)re (2) 

in which the parameter  o. defines the distribution. Re- I' 
placing sin X/X  by Re exp (iXu)du, we obtain 

t,O 

p = R e  [1/(0"2 +62)] exp ih(l+6)ud6du 
0 t - - cx~  !1 

p = exp ( -ho .u)  cos (hlu)du. (3) 
0 

Upon integration we obtain 

p = [ e x p  (-ho.)/(1 + 62/12)] [sin(hl)/hl] 
+ [o./h(l 2 + o-2)] [(1 - exp ( -  ho.) cos (hl)].  

Since l>> o., i.e., the indeterminacy o. of l is much smaller 
than l, 

p = exp ( -  ho.) sin (hl)/hl. (4) 

The frequency function of the Gaussian and Laplace 
distributions may be expressed as 

~o' ( 6) = (1/2o. l/n ) exp (-62/4o.2), (5) 

q;(6)=(1/2o.) exp (-161/a),  o.>0 (6) 

respectively. By similar substitutions we obtain 

I' 
p =  exp (-h2o.2u2) cos (hlu)du (Gaussian) (7) 

, 0  

f' p =  [1/(1 +o.2hEu2)] cos (hlu)du (Laplace).  (8) 
0 

Simple solutions to equations (7) and (8) may be ob- 
tained i fho.~  l ; we then may replace exp ( -  h2o.2u 2) and 
1/(l +hZo.Eu 2) by 1-hEo.2u 2 and arrive at identical so- 
lutions using the Laplace and Gaussian distributions. 
With further simplifications involving the relative mag- 
nitudes of o. and l, we obtain 

does not require the questionable assumption that  ha 
is always small. 

For simplicity we may consider a lattice containing 
one kind of atom. The interference function may be 
expressed as 

j ( h ) =  ~ g( lq)n( lq)(sin ( lq + f ~)h/( l,~ + f q)h ) 
q 

where n(l) is the number  of  neighboring atoms at a 
distance l from any a tom in a lattice of infinite extent, 
g(l) is a function that  modifies n(l) for the presence of 
defects or discrete particles. From equations (I), (4) 
and (9) we observe that  the above equation may be 
expressed as 

j(h)=rl(l)g(l)n(l) sin (hl)/hl (10) 

with the understanding that  l is a subscripted variable 
and the right-hand side of equation (10) involves the 
necessary summation.  In equation (10), rl(l) is the coef- 
ficient of sin (hl)/hl in equation (9) or (4). For a rigid 
lattice q(l)= 1. The function r/modifies the interference 
function for strain. 

As to the relation of 6 to l, we may consider l to be 
made up of m distances each having a length l/m and 
displacement 61. If the displacements are random and 
have the same distribution, the average of m distribu- 
tions is the same as each distribution. This follows from 
a common property  of the Gaussian, Laplace, and 
Cauchy distributions, that  is, each distribution re- 
produces itself by composit ion (cf. Cramer, 1951). For  
the Gaussian and Laplace distributions o.2(1)= ma2(l/m) 
and for Cauchy's  distribution o.(l)=mo.(l/m). Thus we 
have 

tic(l) = exp ( - ho.l) (1 la) 

q~(l) = exp ( - hZa2l) (11 b) 

t/L(/) = i / ( l  -}- h2o.2/) (l lc) 

for Cauchy's, Gauss's, and Laplace's d is t r ibut ions 
respectively. In equations (11), the o.'s represent the 
indeterminacy of unit distances; they do not neces- 
sarily have the same value for every distribution. 

3.5 

3.0 

p_~(1-hZo, z) sin (hl)/hl (9) ~ 2.s 
¢._1 

p _~ exp ( - h2o. z) sin (hl)/hl (9a) ~ 2.0 

p_~[1/(l +hZo.2)] sin (hl)/hl. (9b) ,-': x.s 

,.=5, 1.0 
Equations (4), (9a), and (9b) may be derived more ~: 

simply as follows. Replace, in equation (1), sin (l+6)h " 0.s 
by sin (lh) cos (Oh), neglect 6h in the denominator  and 
perform the integration by substituting equations (2), 0 
(5) and (6) respectively. Evidently such a simplification 
is more valid for Cauchy's  distribution than for the 
others because a rigorous derivation of equation (4) 
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Fig. 1. Experimental (solid line) and theoretical (crosses) 
scattering intensities of a glassy carbon. 
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For a defective lattice 

g ( l ) = e x p ( - M ) ,  ~ > 0  (12) 

in which ~ = 2/L, L being the mean value of defect-free 
di;tances (Ergun, 1970). In equations (10)-(12) the 
variables n and l characterize the lattice (cf Ergun, 
1970) and their formulation and numerical calculations 
using a computer, present no special difficulty. How- 
ever, if ~ and a are small, the calculations may involve 
several thousand interatomic distances and hence be- 
come tedious. Under such conditions it is advantageous 
to resort to the lattice-sum technique by which equa- 
tions are developed for the profiles of individual reflec- 
tions. 

If the strain effect is neglected, the profiles of the 
two-dimensional hk reflections of isotropic random- 
layer lattices may be expressed as (Ruland, 1967; 
Ergun & Berman, 1973) 

j(h)=(nmF2/nAh) g(r)Jo(hor) sin (hr)dr (13) 
0 

in which m is the multiplicity factor, F 2 is the geometric 
structure factor, A is the area of the unit cell, n is the 
number of atoms in it, ho=2n/z, z being the distance 
of separation of the {hk} lines, J0 is the Bessel function 
of zero order. We may modify the integrand of equa- 
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Fig. 2. The function G(R). Solid line is obtained numerically 
from equation (18) using the experimental intensity data; 
crosses are obtained from equation (19) with ~=0.0233. 

tion (13) by r/(r) for the strain effect. Integrating we 
obtain 

j (h) = (nmFZ/2nAhl/Ch) T(Y) (14) 

in which T(Y) is defined by 

T(y )=[ (yz+  l),/z+ y / (yz+ l)],/z (15) 

Y= (h 2 -  h l -  C2)/2Ch (16) 

C =  u + ah (Cauchy's distribution) (17a) 

C = o~ + aZh z (Gauss's or Laplace's 

distribution). (17b) 

The function T has maximum at Y= 1/I/3, and Tm,~x 
--_1"14. 

Equations (10) and (14) yield identical profiles. The 
former is applicable to any lattice, the latter is for 
random-layer lattices only. Although equation (14) 
gives the profiles of individual peaks, the observed 
profile cannot be reproduced without considering the 
influences of the other peaks. Each peak rises very 
sharply and falls slowly. The observed profile of a peak 
is influenced by all of the peaks appearing at lower 
angles and a few neighboring peaks at higher angles. 

Evaluation of  defect and strain effects 

The theory of distortion in a lattice is complex and has 
been the subject of numerous studies (cf Warren, 
1959; Keating, 1968; Ergun, 1973). In a strict sense a 
random distribution of distortion is not valid in that 
strain in the lattice is a function of distance from 
defects (or faults), being greatest in the vicinity of 
defects. However, composition of a large number of 
non-random components produces an approximately 
random distribution (Cramer, 1951); for this reason 
three commonly encountered random distributions 
have been considered in this study, the primary ob- 
jective being the derivation of intensity equations that 
take strain effect in random-layer lattices into account. 

Detailed analyses of the atomic radial distribution 
functions of turbostratic carbons indicated that the 
strain distribution has a Cauchy form (Ergun & Schehl, 
1973; Ergun, 1973). Thus equation (14) with C defined 
by equation (17a) should reproduce the observed 
profiles. The experimentally obtained interference func- 
tion of a glassy carl:on is shown in Fig. 1 as a solid line. 
The parameters m, F 2, n, A, and h0 that appear in 
equation (14) concern the unit-cell structure and are 
readily calculated. The two-dimensional unit cell of 
carbons is a 60 ° rhombus with a=2.461 A and n=2. 
The two atoms are at 0, 0; ½, 3 z. Thus m = 2 if h = k = 0, 
12 if h=l<¢O, 24 if 0=~h=~k¢0; F2=4 if ( h - k )  rood 
3 = 0, 1 otherwise; A = 5.246 A~ 2 ; and h0 = (4n/a[/3) (112 
+ k  2 +hk) t/2. To reproduce theoretically the observed 
interference function we need to know the values of 
and a in equation (17a). In principle these parameters 
are obtained by matching the calculated and observed 
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profiles using a procedure that minimizes the differen- 
ces. 

The defect parameter c~ can be determined simply and 
directly by numerical evaluation of the integral (Ergun, 
1973) 

G(R)=(2/rcZR20) hri(h) sin (hr)dhdr (18) 
.~0 

in which i (h)=j(h)-1,  H is the maximum value of 
h ( -  22 for Ag K~), Q is the atomic density of the layers, 
and R is the radial distance. At R > 7 the function G(R) 
may be approximated by (Ergun, 1973) 

G(R)=(2/cdR 2) [1- (1  +gR) exp ( - ~ R ) ] .  (19) 

The function G(R) as determined numerically from 
equation (18) using experimental i(h) is shown in Fig. 2 
(solid line). At R = 2 0  A the plot yielded a value of 
0.736 for G(R) which, from equation (19), corresponds 
to 0.0233 for ~. Graphical representation of equation 
(19) for c~=0.0233 is included in Fig. 2 (crosses). The 
function G(R) involves an area integral of the atomic 
radial distribution function and, hence, is the normal- 
ized coherent atomic density; its systematic decrease 
with R constitutes a measure of the diminution (due 
to defects) of coherence with increase in distance. 
Having evaluated c~, determination of cr by profile 
matching becomes much simpler. 

culate C and the contribution of strain to C. The results 
are shown in Table 1 for the prominent two-dimen- 
sional reflections of the carbon studied. From the 
Table we observe that the widths of the 10, 11, 21, 30 
and 41 reflections would correspond to the mean 
defect-free distances of 49, 37, 29, 26, and 19 A respec- 
tively, whereas the actual value of the mean defect- 
free distance is 2/~=86 A. In reality, the influence of 
the neighboring reflections does not permit determina- 
tion of the correct peak widths (save the 10 peak) and 
the observed widths do not increase linearly with h0 as 
dictated by equation (17a). It is clear that a study of 
the structure requires a careful profile analysis over an 
angular range covering several peaks (a minimum of 
2). The equations required for such an analysis have 
been developed in this study. 

Table 1. Widths, C= c~ + ah, and the corresponding 
linear dimensions of  some prominent hk reflections of 

carbon for ~ = 0-0233 and cr = 0"0060 

Percent due 
to strain Corresponding 

Reflections Width C 100 x (1 - ct/C) dimension 2/C 
10 0"041 43 49 
I 1 0.054 57 37 
21 0.069 66 29 
30 0.077 70 26 
41 0.105 78 19 

Discuss ion 

The calculated theoretical profile with ~=0.0233 and 
tT--0.0060 is shown in Fig. 1 as crosses. The agreement 
between the theoretical and experimental intensities is 
rather remarkable in view of the fact that it has not 
been possible before to reproduce theoretically the ob- 
served intensity profiles of carbon over an angular 
range covering more than one peak. As will be ap- 
parent, the neglect of strain in previous theoretical 
treatments was largely responsible for the failure. 

An examination of equations (14) and (15) reveals 
that the peak shape is largely determined by T(Y) and 
that the peak width is nearly linear with C (the linearity 
is not obvious but can be verified). Substituting ~= 
0.0233 and a=0.0060 in equation (17a), we may cal- 
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